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ABSTRACT

The proliferation of video content on the web makes similarity de-
tection an indispensable tool in web data management, searching,
and navigation. We have previously proposed a compact represen-
tation of video clips, called video signature, for retrieving similar
video clips in large databases. In this paper, we propose a new
signature clustering algorithm to further improve retrieval per-
formance. The algorithm treats all the signatures as an abstract
threshold graph, where the threshold is determined based on local
data statistics. Similar clusters are identified as highly connected
regions in the graph. This algorithm outperforms simple thresh-
olding and hierarchical clustering techniques in identifying a set of
manually-determined similar clusters from a dataset of 46,356 web
video clips. At 95% precision, our algorithm attains 85% recall
while simple thresholding and complete-link hierarchical scheme
attain 67% and 75% recall respectively. Applying our algorithm
to the entire dataset, 6,900 similar clusters are identified, with an
average cluster size of 2.81 video clips. The distribution of cluster
sizes follows a power-law distribution, which has been shown to
describe many web phenomena.

1. INTRODUCTION
With ever more popularity of video web-publishing, popular con-
tent is being mirrored, reformatted, modified and republished, re-
sulting in excessive content duplication. An efficient algorithm
to identify similar video clips can therefore be beneficial to many
web retrieval applications, such as presenting uncluttered search
results, and providing alternatives in the case of expired links or
network outages. By similar video clips, we mean video clips with
almost identical content but possibly compressed at different qual-
ities, reformatted to different sizes and frame-rates, or undergone
minor editing in either spatial or temporal domain. In [3, 4], we
propose a compact and robust representation of video clips called
video signature for similarity measurement. Specifically, simple
thresholding on distances between signatures is used to identify
similar video clips. In this paper, we investigate clustering meth-
ods to further improve retrieval performance.

A clustering structure can provide an efficient organization of
data which allows users to rapidly focus on relevant information.
For example, clustering is extensively used in the areas of brows-
ing and navigation[8]. Another benefit of clustering, which will
be the focus of this paper, is its potential gain in retrieval perfor-
mance over simple-thresholding or ranking similarity search tech-
niques. Assume we have a distance function that measures simi-
larity. When presented with a query, a simple-thresholding search
retrieves all items from the database that are within a certain dis-

tance threshold away from the query; alternatively, ranking search
techniques retrieve a fixed number of items closest to the query.
In either case, the relationship among individual data items in the
database is completely ignored. On the other hand, a system that
employs clustering will first group the entire database into clusters
of similar items. When presented with a query, the system will
return the cluster closest to the query. Even though the actual per-
formance depends on the clustering algorithm used, by considering
the totality of the data, clustering can typically reduce imprecision
from the distance measurement, and discover hidden similar items.
Recently, clustering techniques have been applied to multimedia
information systems to improve retrieval performance[1, 6].

There is a myriad of clustering algorithms in the literature[11].
Our application of clustering signatures imposes a number of re-
quirements on the clustering algorithm. First, the number of clus-
ters is very large and unknown a priori. Second, the clustering al-
gorithm should be able to adapt to local statistics in order to handle
video clips with very diverse content. Third, there is a small proba-
bility for the signature distance to be large even when the two video
clips are very similar[3]. Hence, the clustering algorithm must be
robust enough to discard such erroneous measurements. To this
end, a class of clustering algorithms based on graph-theoretical
concepts seem particularly suitable[1]. This class of algorithms
treats data items as vertices in a graph and connects potentially
similar items with edges. The goal is to identify highly connected
regions which are indicative of the presence of similar clusters.
Another class of popular clustering algorithms, called the agglom-
erative hierarchical clustering[11], can also be used. This class of
algorithms seeks a hierarchical clustering structure by successively
combining clusters which are close to each other. Single-link and
complete-link clusterings are the two most commonly used hier-
archical algorithms. They differ from each other on how they
measure the distance between two clusters. Single-link defines the
distance based on the two closest elements from the two clusters,
while complete-link uses the elements farthest apart.

In this paper, we propose a new graph-theoretical clustering al-
gorithm for signatures. Our algorithm addresses threshold adapta-
tion and signature uncertainties by considering connected regions
at many different distance thresholds. The details of our algorithm
are described in Section 2. Section 3 compares results of our al-
gorithm to simple thresholding, and two hierarchical clustering
schemes; statistics of the clustering structure are also presented.
We conclude with discussions on future work in Section 4.

2. VIDEO SIGNATURE CLUSTERING

We begin with a brief review of video signature[3, 4]. A video
signature is a compact representation of a video clip which sup-



ports a randomized algorithm in measuring video similarity. We
assume that every frame in a video clip is represented by a high-
dimensional feature vector with a distance metric df (). In our ex-
periments, a quadrant HSV color histogram with l1-metric is used.
A set of M seed feature vectors s = {s[i], i = 1 . . . M} are first
randomly generated. Then, for every video clip v in the dataset,
a corresponding signature vs = {v[i], i = 1 . . . M} is computed,
where v[i] is the frame in v most similar to the seed vector s[i].
We have shown previously that using M as small as nine is ade-
quate for successfully detecting similarities in web video clips[4].
We denote the set of signatures in our dataset as V . The distance
between two signatures vs and ws is defined as

d(vs, ws)
∆
= median{df (v[i], w[i]), i = 1 . . . M}.

The median operator is used to remove outliers due to possible
sampling error in choosing similar signature frames. As d() fails
to satisfy the triangle inequality, it is not a metric in the mathe-
matical sense. In general, the larger d(vs, ws) is, the less likely
video clips v and w are similar to each other. It is thus reason-
able to assume that all pairs of similar video clips, except for those
rare cases when sampling errors occur, have signature distances
smaller than some small predefined µ > 0.

In order to describe our clustering algorithm in a general
framework, we will treat the set of signatures and the distance
relationship as a graph. A graph G has a set of vertices V (G)
and a set of edges E(G) ⊂ V (G) × V (G). All edges we con-
sider are undirected, i.e. (us, vs) = (vs, us). In many occasions,
we only consider a portion of a graph. Thus, we need the notion
of a subgraph – G

′ is a subgraph of G if V (G′) ⊂ V (G) and
E(G′) ⊂ E(G). If E(G′) contains all the edges in G between
vertices in V (G′), G′ is called an induced subgraph. In our appli-
cation, each signature is a vertex in a graph. Ideally, we link two
signatures with an edge if the two corresponding video clips are
truly similar. However, this is unknown a priori. In fact, one of the
goals of a clustering algorithm is to search all possible placement
of edges so as to arrive at the most reasonable graphical structure
to describe all similar video clips. Since the space of graphs with
all possible edge placements is too large to search in practice, our
algorithm only considers a special subset of graphs called the sig-
nature threshold graphs, or simply, threshold graphs. A threshold
graph P (V , ρ) has a vertex set V , and there is an edge between
any two vertices whose corresponding signature distance is less
than a fixed distance threshold ρ with ρ ≤ µ. We use the signature
distance to represent the length of the edge.

Since the majority of the video clips on the web are not simi-
lar to each other, even the largest threshold graph considered, i.e.
P (V , µ), is likely to contain many disjoint connected compo-
nents. A connected component, or CC, of a graph G is an induced
subgraph of G in which all vertices are reachable from each other,
but completely disconnected from the rest of G. CCs in our signa-
ture threshold graphs are candidates for similar clusters. All signa-
tures in a connected component C of a threshold graph P (V , ρ)
are at least distance ρ away from the rest of P (V , ρ). If there is an
edge between every pair of vertices in C, in which case we call C

a complete subgraph, then all signatures in C are less than distance
ρ away from each other. Thus, a complete CC matches intuitively
to what a similar cluster should be : all video clips in it are close to
each other but far away from the rest of the dataset. In practice, full
completeness is too stringent of a requirement to impose because
the randomness in video signatures may erroneously amplify the
distance between some similar video clips. Thus, as long as C is
close to a complete subgraph, it is reasonable to assume that it rep-

resents a similar cluster. To this end, we need a metric to measure
edge density of a CC. Let | · | denote the cardinality of a set. We
notice that C has at least |V (C)|− 1 edges as it is connected, and
at most |V (C)| · (|V (C)| − 1)/2 edges if it is complete. We can
define the edge density Γ(C) as follows:

Γ(C) =

{

|E(C)|−(|V (C)|−1)

|V (C)|·
(|V (C)|−1)

2
−(|V (C)|−1)

if |V (C)| > 2

1 otherwise,
Γ(C) is properly crafted such that it evaluates to 0 when C is
barely connected, and to 1 when C is complete. We define a simi-
lar cluster to be a CC whose edge density exceeds a fixed threshold
γ ∈ (0, 1].

We are now ready to describe our clustering algorithm: we
start by considering each connected component C in the largest
threshold graph P (V , µ). If its edge density exceeds γ, it is de-
clared as a similar cluster and removed from the graph. Otherwise,
it is likely that C contains a number of distinct similar clusters
joined loosely to each other. In such case, we start trimming edges
in decreasing order of their lengths, with edges of the same length
removed simultaneously, until some similar clusters emerge. This
is reasonable as signatures joined by longer edges are less likely
to be similar. This process of edge trimming is equivalent to low-
ering the distance threshold ρ until the graph is partitioned into
multiple CCs. We then compute the edge density for each newly-
formed CC to see if it is a similar cluster. This process of checking
edge density and lowering threshold is repeated until we exhaust
all CCs.

The key step of the above algorithm is to find the appropri-
ate distance threshold to partition a connected component C once
we find that it is not a similar cluster. A naive approach is to first
sort all the edges based on their lengths, and then remove them in
decreasing order until C becomes disconnected. The desired dis-
tance threshold is then the length of the last edge removed. The
drawback of this approach is that we need to check connected-
ness after removing every edge. A simpler method is to make
use of a minimum spanning tree or MST. A MST of a connected
graph is a subgraph that connects all vertices with the least sum
of edge lengths. It can be shown that the length of the longest
edge in the MST, T , of C is the correct distance threshold to par-
tition C[5]. After partitioning C into CCs, the subtree T

′ in each
newly-formed connected component, C

′, is a MST for C
′. Thus,

if we need to further partition C
′, we can set the distance thresh-

old to the length of the longest edge of T
′. In other words, all the

distance thresholds used in our clustering procedure are restricted
only to the length of the edges of the MST. This approach is com-
putationally less complex than the naive approach of examining
every edge and checking for connectedness.

The implementation of our clustering algorithm consists of
two phases: MST construction and cluster formation. In the first
phase, we construct the MST based on a modified version of the
popular Kruskal algorithm[5]. In Kruskal algorithm, the MST of a
graph is constructed in two steps. First, all the edges in the graph
are sorted in increasing length. Second, the MST is incrementally
constructed by testing if each edge can be included in the tree. We
modify the second step to also compute the edge densities of the
CCs attached to the two nodes of every newly-added edge to the
MST. This computation can be easily done by keeping track of
the number of all the nodes and edges examined so far. This extra
step does not change the order of complexity of Kruskal algorithm,
which is O(e log e) where e = |E(P (V , µ))|.

In the second phase of our algorithm, we identify similar clus-
ters by repeatedly setting the thresholds to the length of the edges



of the MST, and checking the pre-computed edge density for each
newly-formed CC. For each threshold tested, all the information
required to identify similar clusters is pre-computed and the com-
plexity is simply O(1). Thus, the computational complexity of the
second phase is O(|V |), the same order as the maximum number
of edges in the MST. The combined complexity of the two phases
in the implementation is thus O(e log e)+O(|V |) ≈ O(e log e).

3. EXPERIMENTAL RESULTS

In this section, we first describe our test dataset, and then compare
the retrieval performance of our proposed algorithm with simple
thresholding, single-link, and complete-link clustering. Statistics
of the clustering structure will also be presented.

3.1. Test dataset and Ground-truth
In all our experiments, the retrieval performance is measured by
how well an algorithm can identify a set of manually-selected sim-
ilar video clusters, or the ground-truth set, in a large test dataset.
The test dataset is a collection of 46,356 video clips, crawled from
the web between August and December, 1999[3]. We expand our
prior effort on constructing the ground-truth[4] and adopt a sta-
tistical approach to identifying a number of similar clusters from
the test dataset. This approach is similar to the pooling method[7]
used in establishing ground-truth for text retrieval systems.

The basic idea of pooling is to send the same queries to dif-
ferent automatic retrieval systems, whose top-ranked results are
pooled together and examined by human experts to identify the
truly relevant ones. For our system, the first step is to use meta-
data terms to identify the initial ground-truth clusters. Meta-data
terms are extracted from the URL addresses and other auxiliary in-
formation for each video in the test dataset [4]. All video clips con-
taining at least one of the top one thousand most frequently used
meta-data terms are manually examined and grouped into similar
clusters. Clusters which are significantly larger than others are re-
moved to prevent bias. The remaining 107 clusters form our initial
ground-truth clusters.

However, there might still be some video clips in the test
dataset that are similar to the ground-truth clusters. We first exam-
ine all video clips in the dataset that share at least one meta-data
term with the video clips already in the ground-truth set. Any ad-
ditional similar video clips are added to the clusters. Afterwards,
a video signature database is constructed for the test dataset with
one hundred frames per signature. This provides a robust retrieval
system as the signature size is far larger than the nine signature
frame used in our system for testing. For each video in the ground-
truth set, the closest one hundred video clips in the video signature
database are manually examined. Again, any additional similar
video clips are added to the ground-truth set. As a result, we ob-
tain a ground-truth set consisting of 443 video clips in 107 clusters.
The cluster size ranges from two to twenty, with average size equal
to 4.1.

3.2. Retrieval Performance
The performance metrics used in our experiments are recall and
precision. Their definitions are described below. Let S denote the
ground-truth set. S is composed of N = 107 non-overlapping
clusters Ci, i = 1 . . . N with ∪N

i=1Ci = S. For any video q ∈ S,
we define the relevant set to q as rel(q) = Ci \ {q} where q ∈ Ci

and \ denotes set exclusion. For a retrieval algorithm, we de-
fine the return set of q, ret(q, λ), to be the set of video clips re-
turned by the algorithm when presenting q as a query. λ is the set
of parameter(s) used by the algorithm. The precise definition of

ret(q, λ) depends on the details of the algorithm. Four algorithms
are tested: simple thresholding used in our previous work[3, 4],
our proposed clustering algorithm, and two hierarchical clustering
schemes: single-link and complete-link[11]. For clustering algo-
rithms where signatures are grouped into clusters, ret(q, λ) is the
set of the video clips in the returned cluster, except for q itself.
For simple thresholding, ret(q, λ) = {x|d(xs, qs) < λ} \ {q}.
Using the notions of relevant and return sets, we define recall and
precision of an algorithm as follows:

Recall(λ)
∆
=

∑

q∈S
|rel(q) ∩ ret(q, λ)|

∑

q∈S
|rel(q)|

Precision(λ)
∆
=

∑

q∈S
|rel(q) ∩ ret(q, λ)|

∑

q∈S
|ret(q, λ)|

.

Thus, recall computes the fraction of all relevant video clips in the
dataset that are returned by the algorithm. Precision measures the
fraction returned by the algorithm that are relevant.

In our experiments, we consider pairwise signature distances
up to µ = 4.0, which is half of the maximum possible distance.
For our dataset, around 1.2 million pairs of signatures satisfy this
criterion. This number is significantly less than the total number
of possible pairs which is (463562 ) ≈ 1 billion. Each algorithm
is tested with a range of parameters to demonstrate the whole
spectrum of precision/recall trade-off. For the two hierarchical
schemes and simple thresholding, the parameter used is a distance
threshold. For a given query, more video clips will be classified
as similar as the distance threshold increases. Thus, the recall
value typically increases with the distance threshold. The param-
eter used by our proposed algorithm is the edge density threshold
γ. The recall value increases as γ is reduced since larger clusters
can be formed.

Figure 1(a) shows precision versus recall for the four algo-
rithms. The single-link algorithm results in the worst performance.
The reason is that as the distance threshold exceeds a certain limit,
long chains of non-similar video clips are erroneously identified as
clusters significantly lowering the precision. Simple thresholding
results in better performance but the single threshold used is in-
adequate to cater to similar video clips at different distances. The
complete-link algorithm performs quite well at low recall values.
Unlike single-link clustering, the complete-link algorithm guaran-
tees that all the video clips in a cluster are within the distance
threshold. Thus, the clustering is more reliable leading to higher
precision values. As the threshold increases to capture similar
video clips that are far apart from each other, the algorithm si-
multaneously groups some non-similar video clips together which
are relatively close to each other. This situation occurs because a
single distance threshold is used in forming clusters. As a result,
the precision drops as the threshold becomes too large. The curve
terminates at 80% precision and 80% recall where the largest pos-
sible threshold of 4.0 is used. Our proposed algorithm provides
the best performance among all the four schemes and achieves its
peak performance of 85% recall and 95% precision with γ = 0.3.
The precision and recall stay around the same level until γ de-
creases beyond 0.03. Precision then starts to drop as large loosely-
connected regions are identified as clusters.

In terms of computational complexity, both simple threshold-
ing and single-link clustering take O(e) to complete – simple
thresholding sequentially examines each edge while single-link
identifies all CCs as clusters. Our implementation of the complete-
link algorithm runs at O(|V |3) but there are many O(|V |2) im-



plementations [9]. Since the number of edges in a graph, e, is
always upper-bounded by |V |2, it might seem that the complexity
of our proposed algorithm, O(e log e), is larger than that of the
others. However in practice, the largest threshold graph, P (V , µ),
is quite sparse, i.e., e � |V |2, making it difficult to compare the
relative complexities of the algorithms. Furthermore, there exist
faster MST algorithms that run close to O(e)[10], and as such, we
are currently investigating the feasibility of combining them with
our clustering step.

Using γ = 0.3 for clustering our entire dataset, a non-
optimized implementation with Perl and BerkeleyDB for memory
management takes roughly 9 hours to complete on a Sun Ultra60
running SunOS 5.7. This does not include the time required for
computing all the signature distances. A total of 6,900 clusters
are produced and the average cluster size is 2.81. In other words,
about 42% of the video clips have at least one similar clip. Figure
1(b) shows the distribution of cluster sizes. After examining some
of the clusters, we notice that many of them consist of video clips
from the same web-pages, and many of them are the same clips at
different bitrates and formats; others are system messages from the
same server. These similar clips are generated intentionally by the
content creators and provide little information on how video clips
are copied and modified by different web users. They constitute
about half of the 42% that have at least one similar clip. On the
other hand, for those clusters with video clips coming from diverse
locations, the largest few are particularly interesting as they reflect
the popularity of the corresponding video clips. The largest four
are labeled in Figure 1(b). A small number of video clips in these
clusters are mis-classified and the error percentages are shown in
parentheses.

We also observe that the distribution of the cluster sizes can
be well-modeled by a family of distributions called the power-law
distributions. In a power-law distribution, Probability(x) ∝ 1/xi

for some positive exponent i. The best power-law fit of our distri-
bution is shown in the log-log plot of Figure 1(c) with i = 2.39. It
is experimentally demonstrated that many web phenomena, such
as the degrees of hyper-linkage of web pages, access statistics for
web pages and web surfing patterns, can be modeled using the
power-law[2]. Interestingly, our estimated exponent is quite close
to those estimated in other web phenomena. This is a good indica-
tion that the clusters produced by our algorithm have captured the
underlying pattern of similar video clips on the web.

4. FUTURE WORK
We are currently exploring a number of issues regarding the clus-
tering algorithm. As a web database is constantly being updated,
it is inconceivable to cluster for every single change made to the
database. We are currently investigating dynamic update algo-
rithms which maintain consistent clustering structure. In addition,
we are constructing statistical models to incorporate the measured
uncertainties from the video signatures into the clustering algo-
rithm.
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Fig. 1. (a) Precision versus recall for different clustering algorithms and simple thresholding. (b) Distribution of cluster sizes in log-linear
scale, with the four largest clusters of video clips from diverse locations labeled. (c) Distribution of cluster sizes in log-log scale with the
best power-law fit.


